Diffusion Model Based Secure Semantic Communications with Adversarial Purification

Xintian Ren, Jun Wu*, Hansong Xu, Xiuzhen Chen

*この研究の対応する著者

研究成果: Conference contribution

抄録

A new communication paradigm based on deep learning, known as semantic communication, is driving research into end-to-end data transmission in tasks such as image classification and reconstruction. However, the issue of security stemming from semantic perturbations remains largely unexplored, leading to vulnerabilities in semantic communication systems. In this paper, we propose a secure semantic communication system that utilizes the diffusion model to tackle this issue. The secure semantic communication system proposed in this paper mitigates perturbations caused by semantic-oriented attacks by employing a diffusing process at the sender side and a denoising process at the receiver side. Simulation results indicate that, compared to conventional methods, the proposed secure semantic communication system exhibits superior robustness and accuracy across various channel conditions.

本文言語English
ホスト出版物のタイトルProceedings - 2024 IEEE 10th Conference on Big Data Security on Cloud, BigDataSecurity 2024
出版社Institute of Electrical and Electronics Engineers Inc.
ページ130-134
ページ数5
ISBN(電子版)9798350389524
DOI
出版ステータスPublished - 2024
イベント10th IEEE Conference on Big Data Security on Cloud, BigDataSecurity 2024 - New York City, United States
継続期間: 2024 5月 102024 5月 12

出版物シリーズ

名前Proceedings - 2024 IEEE 10th Conference on Big Data Security on Cloud, BigDataSecurity 2024

Conference

Conference10th IEEE Conference on Big Data Security on Cloud, BigDataSecurity 2024
国/地域United States
CityNew York City
Period24/5/1024/5/12

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • 情報システム
  • 情報システムおよび情報管理
  • 安全性、リスク、信頼性、品質管理

フィンガープリント

「Diffusion Model Based Secure Semantic Communications with Adversarial Purification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル