抄録
Bottom-up synthesis of siloxane-based nanoporous materials from siloxane oligomers is promising for constructing well-defined structures at a molecular level. Herein, we report the synthesis of nanoporous materials consisting of cage-type siloxanes through the nonhydrolytic siloxane bond formation reaction. Cage siloxanes with double-n-ring geometries (n = 4 or 6) modified with dimethylsilyl and dimethylethoxysilyl groups are synthesized and directly cross-linked using a B(C6F5)3 catalyst, resulting in the formation of porous networks composed of alternating cage siloxane nodes and tetramethyldisiloxane (-SiMe2OSiMe2-) linkers. Compared with conventional hydrolysis and polycondensation reactions of alkoxysilyl-modified cage siloxanes under acid conditions, the non-hydrolytic condensation reaction was found favorable for the formation of porous siloxane networks without unwanted cleavage of the siloxane bonds.
本文言語 | English |
---|---|
ページ(範囲) | 6256-6263 |
ページ数 | 8 |
ジャーナル | Dalton Transactions |
巻 | 53 |
号 | 14 |
DOI | |
出版ステータス | Published - 2024 3月 5 |
ASJC Scopus subject areas
- 無機化学