Discretization principles for linear two-point boundary value problems, III

Tetsuro Yamamoto*, Shin'Ichi Oishi, M. Zuhair Nashed, Zi Cai Li, Qing Fang

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

This paper extends results of Yamamoto et al. (Numer. Funct. Anal. Optimiz. 2008; 29:213-224) to the boundary value problem [image omitted] where the sign of r(x) is indefinite. Let HνAνUν= fν be the finite difference equations on partitions [image omitted], =1,2, with [image omitted] as , where Hν and A ν are diagonal and tridiagonal matrices, respectively, and f ν are vectors generated by discretization of f(x). Then equivalent conditions for the boundary value problem to have a unique solution u ∈ C2[a, b] are given in terms of [image omitted] and [image omitted].

本文言語English
ページ(範囲)1180-1200
ページ数21
ジャーナルNumerical Functional Analysis and Optimization
29
9-10
DOI
出版ステータスPublished - 2008 9月

ASJC Scopus subject areas

  • 分析
  • 信号処理
  • コンピュータ サイエンスの応用
  • 制御と最適化

フィンガープリント

「Discretization principles for linear two-point boundary value problems, III」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル