Distribution of W and Mo in ordinary chondrites and implications for nebular and parent body thermal processes

Ping Kong, Mitsuru Ebihara*


研究成果: Article査読

11 被引用数 (Scopus)


W and Mo abundances in the bulk metals of 10 H, 5 L and 6 LL chondrites were determined by instrumental neutron activation analysis (INAA). Partitioning of W and Mo between metal and non-metal phases was evaluated by comparing Ni-normalized W and Mo abundances in the metal phases with those in the bulk samples. It is observed that W distributions differ significantly between equilibrated ordinary chondrites (EOCs) and unequilibrated ordinary chondrites (UOCs). However, no correlation is confirmed between the W distribution and the petrographic type for EOCs. This implies that the W partitioning among mineral phases can provide a clue for estimating the metamorphic temperature intervening between EOCs and UOCs. The difference in W equilibrium temperatures was observed among H, L and LL chondrite groups and it may correspond to the difference in cooling rates and subsequently in sizes of the chondrite parent bodies; LL chondrites have the lowest equilibrium temperature and, hence, have the largest parent body, whereas H chondrites have the highest equilibrium temperature and the smallest parent body. Mo/W abundance ratios remain constant in EOC metals, but are variable in UOC metals, suggesting that the W solid equilibrium has not been achieved in UOCs. The W and Mo distributions in UOCs still preserve the characteristics of W and Mo in the nebula, which demonstrates that the chondritic metal was formed by melting highly oxidized precursors before or during the accretion of chondrite parent bodies.

ジャーナルEarth and Planetary Science Letters
出版ステータスPublished - 1996 1月

ASJC Scopus subject areas

  • 地球物理学
  • 地球化学および岩石学
  • 地球惑星科学(その他)
  • 宇宙惑星科学


「Distribution of W and Mo in ordinary chondrites and implications for nebular and parent body thermal processes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。