Distributional Behavior of Time Averages of Non-L1 Observables in One-dimensional Intermittent Maps with Infinite Invariant Measures

Takuma Akimoto*, Soya Shinkai, Yoji Aizawa

*この研究の対応する著者

研究成果: Article査読

18 被引用数 (Scopus)

抄録

In infinite ergodic theory, two distributional limit theorems are well-known. One is characterized by the Mittag-Leffler distribution for time averages of L1(m) functions, i.e., integrable functions with respect to an infinite invariant measure. The other is characterized by the generalized arc-sine distribution for time averages of non-L1(m) functions. Here, we provide another distributional behavior of time averages of non-L1(m) functions in one-dimensional intermittent maps where each has an indifferent fixed point and an infinite invariant measure. Observation functions considered here are non-L1(m) functions which vanish at the indifferent fixed point. We call this class of observation functions weak non-L1(m) function. Our main result represents a first step toward a third distributional limit theorem, i.e., a distributional limit theorem for this class of observables, in infinite ergodic theory. To prove our proposition, we propose a stochastic process induced by a renewal process to mimic a Birkoff sum of a weak non-L1up>(m) function in the one-dimensional intermittent maps.

本文言語English
ページ(範囲)476-493
ページ数18
ジャーナルJournal of Statistical Physics
158
2
DOI
出版ステータスPublished - 2015 1月 1

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Distributional Behavior of Time Averages of Non-L1 Observables in One-dimensional Intermittent Maps with Infinite Invariant Measures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル