Doubly sparse structure in image super resolution

Toshiyuki Kato, Hideitsu Hino*, Noboru Murata

*この研究の対応する著者

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

There are a large number of image super resolution algorithms based on the sparse coding, and some algorithms realize multi-frame super resolution. For utilizing multiple low resolution observations, both accurate image registration and sparse coding are required. Previous study on multi-frame super resolution based on sparse coding firstly apply block matching for image registration, followed by sparse coding to enhance the image resolution. In this paper, these two problems are solved by optimizing a single objective function. The proposed formulation not only has a mathematically interesting structure called the double sparsity, but also offers improved numerical performance.

本文言語English
ホスト出版物のタイトル2016 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings
編集者Kostas Diamantaras, Aurelio Uncini, Francesco A. N. Palmieri, Jan Larsen
出版社IEEE Computer Society
ISBN(電子版)9781509007462
DOI
出版ステータスPublished - 2016 11月 8
イベント26th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings - Vietri sul Mare, Salerno, Italy
継続期間: 2016 9月 132016 9月 16

出版物シリーズ

名前IEEE International Workshop on Machine Learning for Signal Processing, MLSP
2016-November
ISSN(印刷版)2161-0363
ISSN(電子版)2161-0371

Other

Other26th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings
国/地域Italy
CityVietri sul Mare, Salerno
Period16/9/1316/9/16

ASJC Scopus subject areas

  • 人間とコンピュータの相互作用
  • 信号処理

フィンガープリント

「Doubly sparse structure in image super resolution」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル