DPLE: A Privacy-Enhanced and Straggler-Resilient Distributed Learning Framework for Smart Cloud

Yilei Xue, Jianhua Li, Jun Wu

研究成果: Conference contribution

抄録

Distributed machine learning (DML) encounters issues related to privacy and the presence of straggling nodes in smart cloud systems. Lagrange coded computing offers a partial solution to mitigate these concerns. Nonetheless, the privacy of the system becomes vulnerable when the number of semi-trusted nodes surpasses a specific limit, or when external eavesdroppers are present. To confront this hurdle, we introduce a novel framework for distributed learning called DPLE (Differentially Private Lagrange Encoding). This framework employs Lagrange interpolation polynomials to obscure the original data while introducing redundancy, thus improving privacy safeguards and increasing robustness to straggling nodes. It also incorporates artificial noise into local computation outcomes to protect confidential data from potential exposures. Furthermore, we perform theoretical analyses to identify the necessary variance of this noise to maintain desired privacy levels. Experimental validations confirm the efficacy of DPLE and examine how different settings of system parameters impact the accuracies of the results.

本文言語English
ホスト出版物のタイトルProceedings - 2024 IEEE 9th International Conference on Smart Cloud, SmartCloud 2024
出版社Institute of Electrical and Electronics Engineers Inc.
ページ7-12
ページ数6
ISBN(電子版)9798350389500
DOI
出版ステータスPublished - 2024
外部発表はい
イベント9th IEEE International Conference on Smart Cloud, SmartCloud 2024 - New York City, United States
継続期間: 2024 5月 102024 5月 12

出版物シリーズ

名前Proceedings - 2024 IEEE 9th International Conference on Smart Cloud, SmartCloud 2024

Conference

Conference9th IEEE International Conference on Smart Cloud, SmartCloud 2024
国/地域United States
CityNew York City
Period24/5/1024/5/12

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識
  • 情報システム
  • モデリングとシミュレーション

フィンガープリント

「DPLE: A Privacy-Enhanced and Straggler-Resilient Distributed Learning Framework for Smart Cloud」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル