TY - JOUR
T1 - Dynamic structure of biological membranes as probed by 1,6-diphenyl-1,3,5-hexatriene
T2 - A nanosecond fluorescence depolarization study
AU - Kinosita, Kazuhiko
AU - Kataoka, Ryoichi
AU - Kimura, Yoshiaki
AU - Gotoh, Osamu
AU - Ikegami, Akira
PY - 1981
Y1 - 1981
N2 - A fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene, was incorporated in four different biological membranes, the purple membrane of Halobacterium halobium, human erythrocyte membrane, rabbit sarcoplasmic reticulum membrane, and rat liver mitochondrial membrane. Time-resolved fluorescence depolarization of the probe suggested that the rotational Brownian motion of the probe in the membranes was restricted in the angular range. The motion of the rodshaped, lipophilic probe molecule, expected to reflect closely the motion of neighboring lipid hydrocarbon chains, was analyzed in terms of the wobbling-in-cone model in which the major axis of the probe was assumed to wobble freely in a cone of semiangle θc with a wobbling diffusion constant Dw. At 35 °C, Dw in the four membranes, in the above order, ranged between 0.048 and 0.15 ns-1 and θc between 31 and 53°. From the rotational rate Dw, the viscosity against the wobbling motion was calculated to be 0.9-0.3 P. When the temperature was raised from 10 to 35 0C, Z)w in all membranes increased approximately 3-fold, corresponding to activation energies of 7-8 kcal/mol, and θc increased by about 10°, except for the purple membrane in which the angular range remained narrow. The same characteristic temperature dependence has been found in many model membrane systems that contain unsaturated lecithins, suggesting an important role of unsaturated phospholipids in the dynamic structure of the lipid hydrocarbon chain region of biological membranes at physiological temperatures. Comparison with model systems suggests that proteins and cholesterol act mainly as barriers that narrow the angular range.
AB - A fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene, was incorporated in four different biological membranes, the purple membrane of Halobacterium halobium, human erythrocyte membrane, rabbit sarcoplasmic reticulum membrane, and rat liver mitochondrial membrane. Time-resolved fluorescence depolarization of the probe suggested that the rotational Brownian motion of the probe in the membranes was restricted in the angular range. The motion of the rodshaped, lipophilic probe molecule, expected to reflect closely the motion of neighboring lipid hydrocarbon chains, was analyzed in terms of the wobbling-in-cone model in which the major axis of the probe was assumed to wobble freely in a cone of semiangle θc with a wobbling diffusion constant Dw. At 35 °C, Dw in the four membranes, in the above order, ranged between 0.048 and 0.15 ns-1 and θc between 31 and 53°. From the rotational rate Dw, the viscosity against the wobbling motion was calculated to be 0.9-0.3 P. When the temperature was raised from 10 to 35 0C, Z)w in all membranes increased approximately 3-fold, corresponding to activation energies of 7-8 kcal/mol, and θc increased by about 10°, except for the purple membrane in which the angular range remained narrow. The same characteristic temperature dependence has been found in many model membrane systems that contain unsaturated lecithins, suggesting an important role of unsaturated phospholipids in the dynamic structure of the lipid hydrocarbon chain region of biological membranes at physiological temperatures. Comparison with model systems suggests that proteins and cholesterol act mainly as barriers that narrow the angular range.
UR - http://www.scopus.com/inward/record.url?scp=0019885885&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0019885885&partnerID=8YFLogxK
M3 - Article
C2 - 7284326
AN - SCOPUS:0019885885
SN - 0006-2960
VL - 20
SP - 4270
EP - 4277
JO - Biochemistry
JF - Biochemistry
IS - 15
ER -