Dynamical characteristics of discretized chaotic permutations

Naoki Masuda*, Kazuyuki Aihara

*この研究の対応する著者

研究成果: Article査読

18 被引用数 (Scopus)

抄録

Chaos theory has been applied to various fields where appropriate random sequences are required. The randomness of chaotic sequences is characteristic of continuous-state systems. Accordingly, the discrepancy between the characteristics of spatially discretized chaotic dynamics and those of original analog dynamics must be bridged to justify applications of digital orbits generated, for example, from digital computers simulating continuous-state chaos. The present paper deals with the chaotic permutations appearing in a chaotic cryptosystem. By analysis of cycle statistics, the convergence of the invariant measure and periodic orbit skeletonization, we show that the orbits in chaotic permutations are ergodic and chaotic enough for applications. In the consequence, the systematic differences in the invariant measures and in the Lyapunov exponents of two infinitesimally L-close maps are also investigated.

本文言語English
ページ(範囲)2087-2103
ページ数17
ジャーナルInternational Journal of Bifurcation and Chaos in Applied Sciences and Engineering
12
10
DOI
出版ステータスPublished - 2002 10月
外部発表はい

ASJC Scopus subject areas

  • モデリングとシミュレーション
  • 工学(その他)
  • 一般
  • 応用数学

フィンガープリント

「Dynamical characteristics of discretized chaotic permutations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル