Dynamical zeta functions for geodesic flows and the higher-dimensional Reidemeister torsion for Fuchsian groups

Yoshikazu Yamaguchi*

*この研究の対応する著者

研究成果: Article査読

抄録

We show that the absolute value at zero of the Ruelle zeta function defined by the geodesic flow coincides with the higher-dimensional Reidemeister torsion for the unit tangent bundle over a 2-dimensional hyperbolic orbifold and a non-unitary representation of the fundamental group. Our proof is based on the integral expression of the Ruelle zeta function. This integral expression is derived from the functional equation of the Selberg zeta function for a discrete subgroup with elliptic elements in PSL2(R). We also show that the asymptotic behavior of the higher-dimensional Reidemeister torsion is determined by the contribution of the identity element to the integral expression of the Ruelle zeta function.

本文言語English
ページ(範囲)155-176
ページ数22
ジャーナルJournal fur die Reine und Angewandte Mathematik
2022
784
DOI
出版ステータスPublished - 2022 3月 1
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Dynamical zeta functions for geodesic flows and the higher-dimensional Reidemeister torsion for Fuchsian groups」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル