Dynamically constructing user profiles with similarity-based online incremental clustering

Roman Y. Shtykh*, Qun Jin

*この研究の対応する著者

研究成果: Article査読

5 被引用数 (Scopus)

抄録

User profiling is a widely used technique to analyse and store user interests and preferences to apply this knowledge to improve user experiences with information systems. In this research paper, we present an approach for dynamically constructing user profiles, particularly from uniform relevance feedback in information-seeking activities. We propose an inference method for user interests, which we call High-Similarity Sequence Data-Driven (H2S2D) clustering and discuss its peculiarities and show its superiority for the creation of high-quality concepts, which are the elementary constituents of user profiles. To reflect the volatility of user interests and emphasise the steadiness of persistent preferences, we adopt recency, frequency and persistency as the three main criteria for multi-layered dynamic profile construction and update.

本文言語English
ページ(範囲)377-397
ページ数21
ジャーナルInternational Journal of Advanced Intelligence Paradigms
1
4
DOI
出版ステータスPublished - 2009 6月

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • 工学(全般)
  • 応用数学

フィンガープリント

「Dynamically constructing user profiles with similarity-based online incremental clustering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル