Dynamics on teichmüller spaces and self-covering of riemann surfaces

Ege Fujikawa*, Katsuhiko Matsuzaki, Masahiko Taniguchi

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

A non-injective holomorphic self-cover of a Riemann surface induces a non-surjective holomorphic self-embedding of its Teichmüller space. We investigate the dynamics of such self-embeddings by applying our structure theorem of self-covering of Riemann surfaces and examine the distribution of its isometric vectors on the tangent bundle over the Teichmüller space. We also extend our observation to quasiregular self-covers of Riemann surfaces and give an answer to a certain problem on quasiconformal equivalence to a holomorphic self-cover.

本文言語English
ページ(範囲)865-888
ページ数24
ジャーナルMathematische Zeitschrift
260
4
DOI
出版ステータスPublished - 2008 12月
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Dynamics on teichmüller spaces and self-covering of riemann surfaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル