Effect of Al2O3 addition on texturing in a rotating strong magnetic field and densification of B4C

Muhammad Fajar*, Anna Gubarevich, Ryosuke S.S. Maki, Tetsuo Uchikoshi, Tohru S. Suzuki, Toyohiko Yano, Katsumi Yoshida

*この研究の対応する著者

研究成果: Article査読

9 被引用数 (Scopus)

抄録

The properties of ceramics can be improved by controlling the microstructure through texturing ceramics in a strong magnetic field. Fabricating dense boron carbide (B4C) requires high temperature sintering, therefore sintering additives are often used in order to densify B4C ceramics at lower temperatures. However, combined effect of texturing and sintering additives on densification of B4C has not been made clear yet. Here we report the effect of alumina (Al2O3) sintering additive on texturing in a strong magnetic field and densification of B4C. Texturing was performed by rotating superconducting magnet at 12 T during slip casting process. Electron backscatter diffraction (EBSD) was used to observed the texturing projection. {0001} plane is clearly oriented in the plane parallel to rotating magnetic field. In addition, Lotgering factor was also calculated as quantitatively evaluation of texturing degree. Results on densification showed that addition of Al2O3 successfully increased density of B4C sintered by spark plasma sintering (SPS) at 1800oC to 97.8%. Formation of aluminum borate (Al5BO9) as secondary phase was detected by X-Ray diffraction (XRD). It is considered that the generation of Al5BO9 assisted finer densification of B4C ceramic. Textured B4C sintered at 1700oC by SPS without alumina addition exhibited the highest orientation of c-axis. Addition of alumina caused decrease in degree of orientation of c-axis.

本文言語English
ページ(範囲)18222-18228
ページ数7
ジャーナルCeramics International
45
15
DOI
出版ステータスPublished - 2019 10月 15
外部発表はい

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • セラミックおよび複合材料
  • プロセス化学およびプロセス工学
  • 表面、皮膜および薄膜
  • 材料化学

フィンガープリント

「Effect of Al2O3 addition on texturing in a rotating strong magnetic field and densification of B4C」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル