Efficient algorithms to compute compressed longest common substrings and compressed palindromes

Wataru Matsubara, Shunsuke Inenaga*, Akira Ishino, Ayumi Shinohara, Tomoyuki Nakamura, Kazuo Hashimoto

*この研究の対応する著者

研究成果: Article査読

57 被引用数 (Scopus)

抄録

This paper studies two problems on compressed strings described in terms of straight line programs (SLPs). One is to compute the length of the longest common substring of two given SLP-compressed strings, and the other is to compute all palindromes of a given SLP-compressed string. In order to solve these problems efficiently (in polynomial time w.r.t. the compressed size) decompression is never feasible, since the decompressed size can be exponentially large. We develop combinatorial algorithms that solve these problems in O (n4 log n) time with O (n3) space, and in O (n4) time with O (n2) space, respectively, where n is the size of the input SLP-compressed strings.

本文言語English
ページ(範囲)900-913
ページ数14
ジャーナルTheoretical Computer Science
410
8-10
DOI
出版ステータスPublished - 2009 3月 1
外部発表はい

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Efficient algorithms to compute compressed longest common substrings and compressed palindromes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル