Efficient Collision Detection Based on Zadoff-Chu Sequences for Satellite-Enabled M2M Random Access

Li Zhen, Hua Kong, Yukun Zhang, Wenjing Wang, Keping Yu

研究成果: Conference contribution

抄録

Due to concurrent access attempts from massive machine-type devices (MTDs) within the wide beam coverage, the existing contention-based random access (RA) scheme suffers from severe physical random access channel (PRACH) over-load when applied to the emerging satellite-enabled machine-to-machine (M2M) communications. In this paper, we propose an efficient collision detection scheme based on cyclically shifted Zadoff-Chu (ZC) sequences, which are generated by the minimum number of required root indexes and a fixed cyclic shift offset independent of the beam radius. The proposed scheme enables rapid collision detection at the first step of RA procedure by capturing correlation peaks at the timing positions corresponding to the multiples of the cyclic shift offset, thus can reduce the access delay and resource consumptions for the collided MTDs. Simulations are carried out to validate the correctness of mathematical analysis, and to demonstrate the significant detection performance improvement of our scheme with effective non-orthogonal interference (NOI) mitigation by compared to the conventional one.

本文言語English
ホスト出版物のタイトルICC 2021 - IEEE International Conference on Communications, Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781728171227
DOI
出版ステータスPublished - 2021 6月
イベント2021 IEEE International Conference on Communications, ICC 2021 - Virtual, Online, Canada
継続期間: 2021 6月 142021 6月 23

出版物シリーズ

名前IEEE International Conference on Communications
ISSN(印刷版)1550-3607

Conference

Conference2021 IEEE International Conference on Communications, ICC 2021
国/地域Canada
CityVirtual, Online
Period21/6/1421/6/23

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 電子工学および電気工学

フィンガープリント

「Efficient Collision Detection Based on Zadoff-Chu Sequences for Satellite-Enabled M2M Random Access」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル