TY - JOUR
T1 - Electrical conduction and breakdown properties of several biodegradable polymers
AU - Ohki, Y.
AU - Hirai, N.
PY - 2007/12
Y1 - 2007/12
N2 - In order to respond to soaring public concern about environmental protection, various biodegradable polymers have been developed. The present paper reports the electrical conduction and breakdown properties of various biodegradable polymers such as poly-L-lactic acid (PLLA), polyethylene terephthalate succinate (PETS), polycaprolactone butylene succinate (PCL-BS), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), and polyhydroxybutyrate/valerate (PHB/V) in comparison to those of low-density polyethylene (LDPE). While the permittivity and conductivity of PLLA and PETS are comparable to LDPE, those of PCL-BS and PBS are much higher. The conductivity is also higher in PBSA. This is because PLLA and PETS are in the glass state at room temperature, while PCL-BS, PBS, and PBSA are in the rubber state. Furthermore, PLLA and PETS show a strong temperature dependence of the conductivity, which is divided into two or three regions, and they also show thermally stimulated polarization or depolarization current around their respective glass transition temperatures. In contrast to the large difference in conductivity among different kinds of samples, all the polymers tested have almost similar impulse breakdown strength at room temperature. As for dc or ac breakdown strength, PLLA and PETS show a relatively higher strength than PCL-BS and PBS.
AB - In order to respond to soaring public concern about environmental protection, various biodegradable polymers have been developed. The present paper reports the electrical conduction and breakdown properties of various biodegradable polymers such as poly-L-lactic acid (PLLA), polyethylene terephthalate succinate (PETS), polycaprolactone butylene succinate (PCL-BS), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), and polyhydroxybutyrate/valerate (PHB/V) in comparison to those of low-density polyethylene (LDPE). While the permittivity and conductivity of PLLA and PETS are comparable to LDPE, those of PCL-BS and PBS are much higher. The conductivity is also higher in PBSA. This is because PLLA and PETS are in the glass state at room temperature, while PCL-BS, PBS, and PBSA are in the rubber state. Furthermore, PLLA and PETS show a strong temperature dependence of the conductivity, which is divided into two or three regions, and they also show thermally stimulated polarization or depolarization current around their respective glass transition temperatures. In contrast to the large difference in conductivity among different kinds of samples, all the polymers tested have almost similar impulse breakdown strength at room temperature. As for dc or ac breakdown strength, PLLA and PETS show a relatively higher strength than PCL-BS and PBS.
KW - Biodegradable polymers
KW - Breakdown properties
KW - Electrical conduction
KW - Glass transition
UR - http://www.scopus.com/inward/record.url?scp=37249070842&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=37249070842&partnerID=8YFLogxK
U2 - 10.1109/TDEI.2007.4401240
DO - 10.1109/TDEI.2007.4401240
M3 - Article
AN - SCOPUS:37249070842
SN - 1070-9878
VL - 14
SP - 1559
EP - 1566
JO - IEEE Transactions on Dielectrics and Electrical Insulation
JF - IEEE Transactions on Dielectrics and Electrical Insulation
IS - 6
ER -