抄録
Totally reversible redox-active polymers, 4-amino-2,2,6,6-tetramethylpiperidin-1-oxyl functionalized polyacrylic acid (PTAm-A) and poly(tripyridiniomesitylene) (PTPM), both of which possessed rapid charge transport properties in an aqueous electrolyte, were applied to a polymer-sandwiched device to offer an electrochemical current rectification functionality. Single-layer and bilayer devices were fabricated employing the PTAm-A and/or PTPM thin layer(s) as charge transport media. Single-layer devices with a 1 cm2 electrode area demonstrated large currents in the order of several milliamperes, which were established by redox mediation based on a fast electron self-exchange reaction between adjacent redox sites in the polymer layers. A current-voltage response obtained from the bilayer device exhibited a rectification effect due to thermodynamically favoured cross reaction at the polymer/polymer interface, retaining the large current densities. The observed currents were comparable to those predicted from the diffusion-controlled charge transport kinetics. Potentiostatic measurements revealed that the rectified current readily achieved a steady state in response to the applied voltage. These results demonstrate that the PTAm-A/PTPM thin-layer heterojunction enabled a large current rectification based on the redox mediation process, providing insight into ideal charge flow systems in various electrochemical devices.
本文言語 | English |
---|---|
ページ(範囲) | 99195-99201 |
ページ数 | 7 |
ジャーナル | RSC Advances |
巻 | 6 |
号 | 101 |
DOI | |
出版ステータス | Published - 2016 |
ASJC Scopus subject areas
- 化学 (全般)
- 化学工学(全般)