抄録
We report an angle-resolved photoemission spectroscopy (ARPES) study of LixCoO2 single crystals which have a hole-doped CoO2 triangular lattice. Similar to NaxCoO2, the Co 3da1g band crosses the Fermi level with strongly renormalized band dispersion while the Co 3deg′ bands are fully occupied in LixCoO2 (x=0.46 and 0.71). At x=0.46, the Fermi surface area is consistent with the bulk hole concentration indicating that the ARPES result represents the bulk electronic structure. On the other hand, at x=0.71, the Fermi surface area is larger than the expectation which can be associated with the inhomogeneous distribution of Li reported in the previous scanning tunneling microscopy study by Iwaya et al. [Phys. Rev. Lett. 111, 126104 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.126104]. However, the Co 3d peak is systematically shifted towards the Fermi level with hole doping excluding phase separation between hole rich and hole poor regions in the bulk. Therefore, the deviation of the Fermi surface area at x=0.71 can be attributed to hole redistribution at the surface avoiding polar catastrophe. The bulk Fermi surface of Co 3da1g is very robust around x=0.5 even in the topmost CoO2 layer due to the absence of the polar catastrophe.
本文言語 | English |
---|---|
論文番号 | 125147 |
ジャーナル | Physical Review B |
巻 | 96 |
号 | 12 |
DOI | |
出版ステータス | Published - 2017 9月 25 |
ASJC Scopus subject areas
- 電子材料、光学材料、および磁性材料
- 凝縮系物理学