TY - JOUR
T1 - Element length calculation in B-spline meshes for complex geometries
AU - Otoguro, Yuto
AU - Takizawa, Kenji
AU - Tezduyar, Tayfun E.
N1 - Funding Information:
This work was supported (first and third authors) in part by Grant-in-Aid for Challenging Exploratory Research 16K13779 from Japan Society for the Promotion of Science (JSPS); Grant-in-Aid for Scientific Research (S) 26220002 from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); Council for Science, Technology and Innovation (CSTI), Cross-Ministerial Strategic Innovation Promotion Program (SIP), “Innovative Combustion Technology” (Funding agency: JST); Grant-in-Aid for Scientific Research (A) 18H04100 from JSPS; and Rice–Waseda research agreement. The computational method parts of the work were also supported (third author) in part by ARO Grant W911NF-17-1-0046 and Top Global University Project of Waseda University.
Publisher Copyright:
© 2020, The Author(s).
PY - 2020/4/1
Y1 - 2020/4/1
N2 - Variational multiscale methods, and their precursors, stabilized methods, have been playing a core-method role in semi-discrete and space–time (ST) flow computations for decades. These methods are sometimes supplemented with discontinuity-capturing (DC) methods. The stabilization and DC parameters embedded in most of these methods play a significant role. Various well-performing stabilization and DC parameters have been introduced in both the semi-discrete and ST contexts. The parameters almost always involve some element length expressions, most of the time in specific directions, such as the direction of the flow or solution gradient. Until recently, stabilization and DC parameters originally intended for finite element discretization were being used also for isogeometric discretization. Recently, element lengths and stabilization and DC parameters targeting isogeometric discretization were introduced for ST and semi-discrete computations, and these expressions are also applicable to finite element discretization. The key stages of deriving the direction-dependent element length expression were mapping the direction vector from the physical (ST or space-only) element to the parent element in the parametric space, accounting for the discretization spacing along each of the parametric coordinates, and mapping what has been obtained back to the physical element. Targeting B-spline meshes for complex geometries, we introduce here new element length expressions, which are outcome of a clear and convincing derivation and more suitable for element-level evaluation. The new expressions are based on a preferred parametric space and a transformation tensor that represents the relationship between the integration and preferred parametric spaces. The test computations we present for advection-dominated cases, including 2D computations with complex meshes, show that the proposed element length expressions result in good solution profiles.
AB - Variational multiscale methods, and their precursors, stabilized methods, have been playing a core-method role in semi-discrete and space–time (ST) flow computations for decades. These methods are sometimes supplemented with discontinuity-capturing (DC) methods. The stabilization and DC parameters embedded in most of these methods play a significant role. Various well-performing stabilization and DC parameters have been introduced in both the semi-discrete and ST contexts. The parameters almost always involve some element length expressions, most of the time in specific directions, such as the direction of the flow or solution gradient. Until recently, stabilization and DC parameters originally intended for finite element discretization were being used also for isogeometric discretization. Recently, element lengths and stabilization and DC parameters targeting isogeometric discretization were introduced for ST and semi-discrete computations, and these expressions are also applicable to finite element discretization. The key stages of deriving the direction-dependent element length expression were mapping the direction vector from the physical (ST or space-only) element to the parent element in the parametric space, accounting for the discretization spacing along each of the parametric coordinates, and mapping what has been obtained back to the physical element. Targeting B-spline meshes for complex geometries, we introduce here new element length expressions, which are outcome of a clear and convincing derivation and more suitable for element-level evaluation. The new expressions are based on a preferred parametric space and a transformation tensor that represents the relationship between the integration and preferred parametric spaces. The test computations we present for advection-dominated cases, including 2D computations with complex meshes, show that the proposed element length expressions result in good solution profiles.
KW - Advection–diffusion equation
KW - Discontinuity-capturing parameter
KW - Element length
KW - Isogeometric discretization
KW - Preferred parametric space
KW - Space–time computational methods
KW - Stabilization parameter
UR - http://www.scopus.com/inward/record.url?scp=85077530803&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077530803&partnerID=8YFLogxK
U2 - 10.1007/s00466-019-01809-w
DO - 10.1007/s00466-019-01809-w
M3 - Article
AN - SCOPUS:85077530803
SN - 0178-7675
VL - 65
SP - 1085
EP - 1103
JO - Computational Mechanics
JF - Computational Mechanics
IS - 4
ER -