Element-splitting-invariant local-length-scale calculation in B-Spline meshes for complex geometries

Yuki Ueda, Yuto Otoguro, Kenji Takizawa*, Tayfun E. Tezduyar


研究成果: Article査読

21 被引用数 (Scopus)


Variational multiscale methods and their precursors, stabilized methods, which are sometimes supplemented with discontinuity-capturing (DC) methods, have been playing their core-method role in flow computations increasingly with isogeometric discretization. The stabilization and DC parameters embedded in most of these methods play a significant role. The parameters almost always involve some local-length-scale expressions, most of the time in specific directions, such as the direction of the flow or solution gradient. Until recently, local-length-scale expressions originally intended for finite element discretization were being used also for isogeometric discretization. The direction-dependent expressions introduced in [Y. Otoguro, K. Takizawa and T. E. Tezduyar, Element length calculation in B-spline meshes for complex geometries, Comput. Mech. 65 (2020) 1085-1103, https://doi.org/10.1007/s00466-019-01809-w] target B-spline meshes for complex geometries. The key stages of deriving these expressions are mapping the direction vector from the physical element to the parent element in the parametric space, accounting for the discretization spacing along each of the parametric coordinates, and mapping what has been obtained back to the physical element. The expressions are based on a preferred parametric space and a transformation tensor that represents the relationship between the integration and preferred parametric spaces. Element splitting may be a part of the computational method in a variety of cases, including computations with T-spline discretization and immersed boundary and extended finite element methods and their isogeometric versions. We do not want the element splitting to influence the actual discretization, which is represented by the control or nodal points. Therefore, the local length scale should be invariant with respect to element splitting. In element definition, invariance of the local length scale is a crucial requirement, because, unlike the element definition choices based on implementation convenience or computational efficiency, it influences the solution. We provide a proof, in the context of B-spline meshes, for the element-splitting invariance of the local-length-scale expressions introduced in the above reference.

ジャーナルMathematical Models and Methods in Applied Sciences
出版ステータスPublished - 2020 10月 1

ASJC Scopus subject areas

  • モデリングとシミュレーション
  • 応用数学


「Element-splitting-invariant local-length-scale calculation in B-Spline meshes for complex geometries」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。