Emotional speech classification in consensus building

Ning He, Shuoqing Yao, Osamu Yoshie

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

In this paper we introduce a novel approach that robust automatic speech features recognition of one's emotion is achieved in a classification model named decision forest. The 13th order of Mel-frequency ceptstrum coefficients (MFCC) vector is processed as the multivariate data that will be imported to our classifier. In order to draw underlying and inductive information behind the MFCC feature, our decision forest classifier contains two stages to make classification, a supervised clustering based pattern extraction stage and a soft discretization based decision forest stage. Finally, a Japanese emotion corpus used for training and evaluation is described in detail. The results in recognition of six discrete emotions exceeded a mean value of 81% recognition rate.

本文言語English
ホスト出版物のタイトル2014 10th International Conference on Communications, COMM 2014 - Conference Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(印刷版)9781479923854
DOI
出版ステータスPublished - 2014 1月 1
イベント2014 10th International Conference on Communications, COMM 2014 - Bucharest, Romania
継続期間: 2014 5月 292014 5月 31

出版物シリーズ

名前IEEE International Conference on Communications
ISSN(印刷版)1550-3607

Conference

Conference2014 10th International Conference on Communications, COMM 2014
国/地域Romania
CityBucharest
Period14/5/2914/5/31

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 電子工学および電気工学

フィンガープリント

「Emotional speech classification in consensus building」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル