Encoding Longer-term Contextual Sensorimotor Information in a Predictive Coding Model

Junpei Zhong, Tetsuya Ogata, Angelo Cangelosi

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

Studies suggest that the difference of the sensorimotor events can be recorded with the fast- and slower-changing neural activities in the hierarchical brain areas, in which they have bi-directional connections. The slow-changing representations attempt to predict the activities on the faster level by relaying categorized sensorimotor events. On the other hand, the incoming sensory information corrects such event-based prediction on the higher level by the novel or surprising signal. From this motivation, we propose a predictive hierarchical artificial neural network model which is implemented the differentiated temporal parameters for neural updates. Also, both the fast- and slow-changing neural activities are modulated by the active motor activities. This model is examined in the driving dataset, recorded in various events, which incorporates the image sequences and the ego-motion of the vehicle. Experiments show that the model encodes the driving scenarios on the higher-level where the neuron recorded the long-term context.

本文言語English
ホスト出版物のタイトルProceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018
編集者Suresh Sundaram
出版社Institute of Electrical and Electronics Engineers Inc.
ページ160-167
ページ数8
ISBN(電子版)9781538692769
DOI
出版ステータスPublished - 2019 1月 28
イベント8th IEEE Symposium Series on Computational Intelligence, SSCI 2018 - Bangalore, India
継続期間: 2018 11月 182018 11月 21

出版物シリーズ

名前Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018

Conference

Conference8th IEEE Symposium Series on Computational Intelligence, SSCI 2018
国/地域India
CityBangalore
Period18/11/1818/11/21

ASJC Scopus subject areas

  • 人工知能
  • 理論的コンピュータサイエンス

フィンガープリント

「Encoding Longer-term Contextual Sensorimotor Information in a Predictive Coding Model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル