Energy Harvesting Design for Cooperative Reconfigurable Intelligent Surface with Multi-Agent Deep Reinforcement Learning

Yihang Tao, Jun Wu*, Qianqian Pan, Xiuzhen Chen

*この研究の対応する著者

研究成果: Conference contribution

抄録

Cooperative reconfigurable intelligent surface (Cooperative- RIS)-assisted communication systems have been proven to provide more smart computing and communication ability than single-RIS or multi-distributed-RIS systems regarding beamforming gain and channel diversity. However, the increased number of deployed RISs brings heavier energy consumption, which makes the cooperative- RIS system less sustainable. The majority of previous works mainly study energy harvesting (EH) for single- RIS systems which cannot be directly applied to the cooperative- RIS systems. In this paper, we study the EH for cooperative- RIS-assisted communication systems. Specifically, we first model the cooperative beamforming and EH optimization as a non-convex problem. Besides, we propose a multi-agent deep deterministic policy gradient (MADDPG)-based EH efficiency maximization scheme for cooperative RISs while satisfying an acceptable sum rate. Finally, experimental results show the effectiveness of our proposed scheme.

本文言語English
ホスト出版物のタイトルProceedings - 2024 IEEE 10th International Conference on Intelligent Data and Security, IDS 2024
出版社Institute of Electrical and Electronics Engineers Inc.
ページ42-46
ページ数5
ISBN(電子版)9798350389487
DOI
出版ステータスPublished - 2024
イベント10th IEEE International Conference on Intelligent Data and Security, IDS 2024 - New York City, United States
継続期間: 2024 5月 102024 5月 12

出版物シリーズ

名前Proceedings - 2024 IEEE 10th International Conference on Intelligent Data and Security, IDS 2024

Conference

Conference10th IEEE International Conference on Intelligent Data and Security, IDS 2024
国/地域United States
CityNew York City
Period24/5/1024/5/12

ASJC Scopus subject areas

  • 安全性、リスク、信頼性、品質管理
  • 人工知能
  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • 情報システム

フィンガープリント

「Energy Harvesting Design for Cooperative Reconfigurable Intelligent Surface with Multi-Agent Deep Reinforcement Learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル