Enhancement of biofilm formation onto surface-modified hollow-fiber membranes and its application to a membrane-aerated biofilm reactor

A. Terada*, T. Yamamoto, K. Hibiya, S. Tsuneda, A. Hirata

*この研究の対応する著者

研究成果: Article査読

15 被引用数 (Scopus)

抄録

Surface-modified hollow-fiber membranes were prepared by radiation-induced grafting of an epoxy-group-containing monomer, glycidylmethacrylate (GMA), onto a polyethylene-based fiber (PE-fiber). The epoxy ring of GMA was opened by introduction of diethylamine (DEA). The bacterial adhesivity to this material (DEA-fiber) was tested by immersion into a nitrifying bacterial suspension. The initial adhesion rates and the amount of attached bacteria of the DEA-fiber were 6-10-fold and 3-fold greater than those of the PE fiber, respectively. A membrane-aerated biofilm reactor (MABR) composed of DEA fibers was developed for partial nitrification with nitrite accumulation. Prior to the nitrification test, it was confirmed that the oxygen supply rate (OSR) was proportional to air pressure up to 100 kPa, allowing easy control of oxygen supply. Stable nitrite accumulation was observed in the partial nitrification test at a fixed oxygen supply throughout the operation period, indicating that oxygen was consumed only by ammonia oxidizers. Furthermore, it was demonstrated that oxygen utilization efficiency (OUE) in the ammonia oxidation process was nearly 100% after 300 h incubation.

本文言語English
ページ(範囲)263-268
ページ数6
ジャーナルWater Science and Technology
49
11-12
DOI
出版ステータスPublished - 2004

ASJC Scopus subject areas

  • 環境工学
  • 水の科学と技術

フィンガープリント

「Enhancement of biofilm formation onto surface-modified hollow-fiber membranes and its application to a membrane-aerated biofilm reactor」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル