抄録
The instability of an entropic dynamical model is considered via Jacobi vector field and the Lyapunov exponent. From the viewpoint of information geometry, geometric structure of the statistical manifold underlying this model is investigated, and we conclude that it is a manifold with constant negative scalar curvature. By use of the Jacobi vector field associated with the geodesics, we study the asymptotic behavior of the geodesic spread on the statistical manifold and reach that it is described by an exponentially divergent Jacobi vector field with respect to time. A positive Lyapunov exponent is also obtained, that explains the local instability of the system as well. Furthermore, submanifolds are studied similarly.
本文言語 | English |
---|---|
ページ(範囲) | 1249-1262 |
ページ数 | 14 |
ジャーナル | Romanian Journal of Physics |
巻 | 60 |
号 | 9-10 |
出版ステータス | Published - 2015 |
ASJC Scopus subject areas
- 物理学および天文学(全般)