Epidemic dynamics on metapopulation networks with node2vec mobility

Lingqi Meng, Naoki Masuda*

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Metapopulation models have been a powerful tool for both theorizing and simulating epidemic dynamics. In a metapopulation model, one considers a network composed of subpopulations and their pairwise connections, and individuals are assumed to migrate from one subpopulation to another obeying a given mobility rule. While how different mobility rules affect epidemic dynamics in metapopulation models has been studied, there have been relatively few efforts on comparison of the effects of simple (i.e., unbiased) random walks and more complex mobility rules. Here we study a susceptible-infectious-susceptible (SIS) dynamics in a metapopulation model in which individuals obey a parametric second-order random-walk mobility rule called the node2vec. We map the second-order mobility rule of the node2vec to a first-order random walk in a network whose each node is a directed edge connecting a pair of subpopulations and then derive the epidemic threshold. For various networks, we find that the epidemic threshold is large (therefore, epidemic spreading tends to be suppressed) when the individuals infrequently backtrack or infrequently visit the common neighbors of the currently visited and the last visited subpopulations than when the individuals obey the simple random walk. The amount of change in the epidemic threshold induced by the node2vec mobility is in general not as large as, but is sometimes comparable with, the one induced by the change in the diffusion rate for individuals.

本文言語English
論文番号110960
ジャーナルJournal of Theoretical Biology
534
DOI
出版ステータスPublished - 2022 2月 7
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • モデリングとシミュレーション
  • 生化学、遺伝学、分子生物学(全般)
  • 免疫学および微生物学(全般)
  • 農業および生物科学(全般)
  • 応用数学

フィンガープリント

「Epidemic dynamics on metapopulation networks with node2vec mobility」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル