Estimating marginal treatment effects under unobserved group heterogeneity

Tadao Hoshino*, Takahide Yanagi

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

This article studies the treatment effect models in which individuals are classified into unobserved groups based on heterogeneous treatment rules. By using a finite mixture approach, we propose a marginal treatment effect (MTE) framework in which the treatment choice and outcome equations can be heterogeneous across groups. Under the availability of instrumental variables specific to each group, we show that the MTE for each group can be separately identified. On the basis of our identification result, we propose a two-step semiparametric procedure for estimating the group-wise MTE. We illustrate the usefulness of the proposed method with an application to economic returns to college education.

本文言語English
ページ(範囲)197-216
ページ数20
ジャーナルJournal of Causal Inference
10
1
DOI
出版ステータスPublished - 2022 1月 1

ASJC Scopus subject areas

  • 統計学および確率
  • 統計学、確率および不確実性

フィンガープリント

「Estimating marginal treatment effects under unobserved group heterogeneity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル