Estimating Music Listener's Emotion from Bio-signals with EEG Denoising and for Unlearned Music Pieces

Nanami Tanizawa, Mutsumi Suganuma, Wataru Kameyama

研究成果: Conference contribution

抄録

We have been studying to utilize bio-signals of music listeners for estimating their emotions in order to realize a music recommender system. Our previous study shows high classification accuracy of emotions by applying CNN to bio-signals including brainwave, heartbeat, and pupil diameter. However, there are three remaining issues of small dataset, noise in brainwave, and emotion estimation for unlearned music pieces. Therefore, in this paper, by applying CNN and Random Forest, we compare the emotion classification accuracy with and without brainwave denoising, and analyze the accuracy for unlearned music pieces, where 100 music pieces are used in the experiment for one subject. The comparison results show that the denoising increases the classification accuracy, while the unlearned music pieces are not well classified with slightly higher accuracy than the chance level, which remains for the further study.

本文言語English
ホスト出版物のタイトル2021 IEEE 10th Global Conference on Consumer Electronics, GCCE 2021
出版社Institute of Electrical and Electronics Engineers Inc.
ページ75-76
ページ数2
ISBN(電子版)9781665436762
DOI
出版ステータスPublished - 2021
イベント10th IEEE Global Conference on Consumer Electronics, GCCE 2021 - Kyoto, Japan
継続期間: 2021 10月 122021 10月 15

出版物シリーズ

名前2021 IEEE 10th Global Conference on Consumer Electronics, GCCE 2021

Conference

Conference10th IEEE Global Conference on Consumer Electronics, GCCE 2021
国/地域Japan
CityKyoto
Period21/10/1221/10/15

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • 信号処理
  • 生体医工学
  • 電子工学および電気工学
  • メディア記述
  • 器械工学

フィンガープリント

「Estimating Music Listener's Emotion from Bio-signals with EEG Denoising and for Unlearned Music Pieces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル