Estimation of Laplacian spectra of direct and strong product graphs

Hiroki Sayama*

*この研究の対応する著者

研究成果: Article査読

14 被引用数 (Scopus)

抄録

Calculating a product of multiple graphs has been studied in mathematics, engineering, computer science, and more recently in network science, particularly in the context of multilayer networks. One of the important questions to be addressed in this area is how to characterize spectral properties of a product graph using those of its factor graphs. While several such characterizations have already been obtained analytically (mostly for adjacency spectra), characterization of Laplacian spectra of direct product and strong product graphs has remained an open problem. Here we develop practical methods to estimate Laplacian spectra of direct and strong product graphs from spectral properties of their factor graphs using a few heuristic assumptions. Numerical experiments showed that the proposed methods produced reasonable estimation with percentage errors confined within a ±10% range for most eigenvalues.

本文言語English
ページ(範囲)160-170
ページ数11
ジャーナルDiscrete Applied Mathematics
205
DOI
出版ステータスPublished - 2016
外部発表はい

ASJC Scopus subject areas

  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「Estimation of Laplacian spectra of direct and strong product graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル