Evidentials in causal premise semantics: theoretical and experimental investigation

Yurie Hara*, Naho Orita, Hiromu Sakai

*この研究の対応する著者

研究成果: Conference contribution

抄録

We formalize the causal component of Davis & Hara’s (2014) analysis of Japanese evidentiality, which defines “indirect evidence” as an observation of the effect state of the cause-effect dependency. The analysis correctly predicts that uttering p-youda only commits the speaker to ‘if p, q must be true’ but not to the prejacent p, and successfully derives the asymmetry between the prejacent p and the evidence source q. Also, the results of the rating study and the corpus study show that the interpretation and the distribution of evidentials are subject to the cause-effect dependencies.

本文言語English
ホスト出版物のタイトルNew Frontiers in Artificial Intelligence - JSAI-isAI Workshops, JURISIN, SKL, AI-Biz, LENLS, AAA, SCIDOCA, kNeXI, Revised Selected Papers
編集者Koji Mineshima, Kazuhiro Kojima, Ken Satoh, Sachiyo Arai, Daisuke Bekki, Yuiko Ohta
出版社Springer Verlag
ページ282-298
ページ数17
ISBN(印刷版)9783319937939
DOI
出版ステータスPublished - 2018
イベント9th JSAI International Symposium on Artificial Intelligence, JSAI-isAI 2017 - Tsukuba, Japan
継続期間: 2017 11月 132017 11月 15

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
10838 LNAI
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other9th JSAI International Symposium on Artificial Intelligence, JSAI-isAI 2017
国/地域Japan
CityTsukuba
Period17/11/1317/11/15

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Evidentials in causal premise semantics: theoretical and experimental investigation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル