Evolving data sets to highlight the performance differences between machine learning classifiers

Thomas Raway*, J. David Schaffer, Kenneth J. Kurtz, Hiroki Sayama

*この研究の対応する著者

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

We present a preliminary study to evolve data sets that maximize performance differences between multiple machine learning classifiers. The aim is to provide useful information towards the decision of which machine learning classifier to use given a particular data set. While literature already exists on comparing multiple classifiers across multiple pre-existing data sets, our approach is novel and unique in that we evolved completely new data sets designed to highlight the performance differences between supervised learning classifiers. By investigating these evolved data sets, we hope to add to the knowledge base concerning which classifiers are appropriate for specific real world classification tasks. Copyright is held by the author/owner(s).

本文言語English
ホスト出版物のタイトルGECCO'12 - Proceedings of the 14th International Conference on Genetic and Evolutionary Computation Companion
出版社Association for Computing Machinery
ページ657-658
ページ数2
ISBN(印刷版)9781450311786
DOI
出版ステータスPublished - 2012
外部発表はい
イベント14th International Conference on Genetic and Evolutionary Computation Companion, GECCO'12 Companion - Philadelphia, PA, United States
継続期間: 2012 7月 72012 7月 11

出版物シリーズ

名前GECCO'12 - Proceedings of the 14th International Conference on Genetic and Evolutionary Computation Companion

Conference

Conference14th International Conference on Genetic and Evolutionary Computation Companion, GECCO'12 Companion
国/地域United States
CityPhiladelphia, PA
Period12/7/712/7/11

ASJC Scopus subject areas

  • 計算理論と計算数学

フィンガープリント

「Evolving data sets to highlight the performance differences between machine learning classifiers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル