Exactly conservative semi-Lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique

Takashi Nakamura*, Ryotaro Tanaka, Takashi Yabe, Kenji Takizawa

*この研究の対応する著者

研究成果: Article査読

125 被引用数 (Scopus)

抄録

A new numerical method that guarantees exact mass conservation is proposed to solve multidimensional hyperbolic equations in semi-Lagrangian form. The method is based on the constrained interpolation profile (CIP) scheme and keeps the many good characteristics of the original CIP scheme. The CIP strategy is applied to the integral form of variables. Although the advection and nonadvection terms are separately treated, mass conservation is kept in the form of a spatial profile inside a grid cell. Therefore, it retains various advantages of the semi-Lagrangian solution with exact conservation, which has been beyond the capability of conventional semi-Lagrangian schemes.

本文言語English
ページ(範囲)171-207
ページ数37
ジャーナルJournal of Computational Physics
174
1
DOI
出版ステータスPublished - 2001 11月 20
外部発表はい

ASJC Scopus subject areas

  • 数値解析
  • モデリングとシミュレーション
  • 物理学および天文学(その他)
  • 物理学および天文学(全般)
  • コンピュータ サイエンスの応用
  • 計算数学
  • 応用数学

フィンガープリント

「Exactly conservative semi-Lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル