Existence and Uniqueness of Weak Solutions to the Two-Dimensional Stationary Navier–Stokes Exterior Problem

Masao Yamazaki*

*この研究の対応する著者

研究成果: Article査読

5 被引用数 (Scopus)

抄録

This paper is concerned with the stationary Navier–Stokes equation in two-dimensional exterior domains with external forces and inhomogeneous boundary conditions, and shows the existence of weak solutions. This solution enjoys a new energy inequality, provided the total flux is bounded by an absolute constant. It is also shown that, under the symmetry condition, the weak solutions tend to 0 at infinity. This paper also provides two criteria for the uniqueness of weak solutions under the assumption on the existence of one small solution which vanishes at infinity. In these criteria the aforementioned energy inequality plays a crucial role.

本文言語English
ページ(範囲)2019-2051
ページ数33
ジャーナルJournal of Mathematical Fluid Mechanics
20
4
DOI
出版ステータスPublished - 2018 12月 1

ASJC Scopus subject areas

  • 数理物理学
  • 凝縮系物理学
  • 計算数学
  • 応用数学

フィンガープリント

「Existence and Uniqueness of Weak Solutions to the Two-Dimensional Stationary Navier–Stokes Exterior Problem」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル