Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid

Hideo Kozono*, Masanari Miura, Yoshie Sugiyama

*この研究の対応する著者

研究成果: Article査読

88 被引用数 (Scopus)

抄録

We consider the Keller-Segel system coupled with the Navier-Stokes fluid in the whole space, and prove the existence of global mild solutions with the small initial data in the scaling invariant space. Our method is based on the implicit function theorem which yields necessarily continuous dependence of solutions for the initial data. As a byproduct, we show the asymptotic stability of solutions as the time goes to infinity. Since we may deal with the initial data in the weak Lp-spaces, the existence of self-similar solutions provided the initial data are small homogeneous functions.

本文言語English
ページ(範囲)1663-1683
ページ数21
ジャーナルJournal of Functional Analysis
270
5
DOI
出版ステータスPublished - 2016 3月 1

ASJC Scopus subject areas

  • 分析

フィンガープリント

「Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル