抄録
The Shigesada-Kawasaki-Teramoto model is a generalization of the classical Lotka-Volterra competition model for which the competing species undergo both diffusion, self-diffusion and cross-diffusion. Very few mathematical results are known for this model, especially in higher space dimensions. In this paper, we shall prove global existence of strong solutions in any space dimension for this model when the cross-diffusion coefficient in the first species is sufficiently small and when there is no self-diffusion or cross-diffusion in the second species.
本文言語 | English |
---|---|
ページ(範囲) | 1193-1200 |
ページ数 | 8 |
ジャーナル | Discrete and Continuous Dynamical Systems |
巻 | 9 |
号 | 5 |
出版ステータス | Published - 2003 9月 |
ASJC Scopus subject areas
- 数学 (全般)
- 分析
- 応用数学
- 離散数学と組合せ数学