Experience-based imitation using RNNPB

Ryunosuke Yokoya*, Tetsuya Ogata, Jun Tani, Kazunori Komatani, Hiroshi G. Okuno

*この研究の対応する著者

研究成果: Article査読

21 被引用数 (Scopus)

抄録

Robot imitation is a useful and promising alternative to robot programming. Robot imitation involves two crucial issues. The first is how a robot can imitate a human whose physical structure and properties differ greatly from its own. The second is how the robot can generate various motions from finite programmable patterns (generalization). This paper describes a novel approach to robot imitation based on its own physical experiences. We considered the target task of moving an object on a table. For imitation, we focused on an active sensing process in which the robot acquires the relation between the object's motion and its own arm motion. For generalization, we applied the RNNPB (recurrent neural network with parametric bias) model to enable recognition/generation of imitation motions. The robot associates the arm motion which reproduces the observed object's motion presented by a human operator. Experimental results proved the generalization capability of our method, which enables the robot to imitate not only motion it has experienced, but also unknown motion through nonlinear combination of the experienced motions.

本文言語English
ページ(範囲)1351-1367
ページ数17
ジャーナルAdvanced Robotics
21
12
DOI
出版ステータスPublished - 2007 12月 1
外部発表はい

ASJC Scopus subject areas

  • ソフトウェア
  • 制御およびシステム工学
  • 人間とコンピュータの相互作用
  • ハードウェアとアーキテクチャ
  • コンピュータ サイエンスの応用

フィンガープリント

「Experience-based imitation using RNNPB」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル