TY - JOUR
T1 - Exploitation of an additional hydrophobic pocket of σ 1 receptors
T2 - Late-stage diverse modifications of spirocyclic thiophenes by C-H bond functionalization
AU - Meyer, Christina
AU - Neue, Benedikt
AU - Schepmann, Dirk
AU - Yanagisawa, Shuichi
AU - Yamaguchi, Junichiro
AU - Würthwein, Ernst Ulrich
AU - Itami, Kenichiro
AU - Wünsch, Bernhard
PY - 2011/12/7
Y1 - 2011/12/7
N2 - The hypothesis that the σ 1 receptor will tolerate an additional aryl moiety in position 1 of the spirocyclic system was based on spirocyclic pyrazole derivatives, pharmacophore models of σ 1 receptor ligands and DFT calculations. The strategy of introducing the aryl residue at the final step of the synthesis allowed the preparation of a large set of diverse ligands for the exploitation of the hydrophobic pocket of the σ 1 receptor protein. The catalyst system PdCl 2/2,2′-bipyridyl/Ag 2CO 3 is able to introduce various aryl groups onto the α-positions of spirocyclic thiophene derivatives 5 and 6 to afford the target aryl-appended spirocyclic thiophenes 3 and 4. Although the σ 1 affinity of the 1-phenyl substituted spirocyclic thiophenes 3a and 4a is slightly reduced compared with the σ 1 affinity of the non-arylated compounds 5 and 6, both compounds represent very potent σ 1 receptor ligands (3a: K i = 4.5 nM; 4a: K i = 1.0 nM). This result indicates that an aryl moiety in position 1 is well tolerated by the σ 1 receptor protein. The substitution pattern of the additional phenyl moiety has only weak effects on the σ 1 affinity. Even ligands 3f and 4h with extended naphthyl residue show high σ 1 affinity. However, decrease of σ 1 affinity by extension of the π-system to a biphenylyl substituent (4j: K i = 30 nM) indicates that the biphenylyl residue is too large for the primary hydrophobic binding pocket of the σ 1 receptor.
AB - The hypothesis that the σ 1 receptor will tolerate an additional aryl moiety in position 1 of the spirocyclic system was based on spirocyclic pyrazole derivatives, pharmacophore models of σ 1 receptor ligands and DFT calculations. The strategy of introducing the aryl residue at the final step of the synthesis allowed the preparation of a large set of diverse ligands for the exploitation of the hydrophobic pocket of the σ 1 receptor protein. The catalyst system PdCl 2/2,2′-bipyridyl/Ag 2CO 3 is able to introduce various aryl groups onto the α-positions of spirocyclic thiophene derivatives 5 and 6 to afford the target aryl-appended spirocyclic thiophenes 3 and 4. Although the σ 1 affinity of the 1-phenyl substituted spirocyclic thiophenes 3a and 4a is slightly reduced compared with the σ 1 affinity of the non-arylated compounds 5 and 6, both compounds represent very potent σ 1 receptor ligands (3a: K i = 4.5 nM; 4a: K i = 1.0 nM). This result indicates that an aryl moiety in position 1 is well tolerated by the σ 1 receptor protein. The substitution pattern of the additional phenyl moiety has only weak effects on the σ 1 affinity. Even ligands 3f and 4h with extended naphthyl residue show high σ 1 affinity. However, decrease of σ 1 affinity by extension of the π-system to a biphenylyl substituent (4j: K i = 30 nM) indicates that the biphenylyl residue is too large for the primary hydrophobic binding pocket of the σ 1 receptor.
UR - http://www.scopus.com/inward/record.url?scp=81255128914&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=81255128914&partnerID=8YFLogxK
U2 - 10.1039/c1ob06149f
DO - 10.1039/c1ob06149f
M3 - Article
C2 - 21986584
AN - SCOPUS:81255128914
SN - 1477-0520
VL - 9
SP - 8016
EP - 8029
JO - Organic and Biomolecular Chemistry
JF - Organic and Biomolecular Chemistry
IS - 23
ER -