Exploiting Paraphrasers and Inverse Paraphrasers: A Novel Approach to Enhance English Writing Fluency through Improved Style Transfer Training Data

Zhendong Du*, Kenji Hashimoto

*この研究の対応する著者

研究成果: Conference contribution

抄録

In the realm of enhancing English writing fluency, the scarcity of high-quality training data has perennially posed a significant challenge. Moreover, elevating the fluency of writing while ensuring the preservation of semantic integrity compounds the intricacies of this task. In this study, we introduce and implement a style converter rooted in the Paraphraser and Inverse Paraphraser methodologies, aimed at ameliorating English writing fluency. Concurrently, this converter facilitated the generation of a voluminous corpus of synthetic training data. Utilizing this data, we fine-tuned GPT-2 to forge an English text style transfer model. Remarkably, despite our model being trained on a dataset substantially smaller than that of prevailing baseline methods, it exhibited exemplary performance across multiple evaluation metrics, even surpassing these baselines on certain pivotal indices. These findings corroborate the efficacy of our approach and underscore its immense potential in the domain of English writing fluency enhancement. This investigation not only offers a novel optimization strategy for English composition but also furnishes researchers in cognate fields with fresh research perspectives and methodologies.

本文言語English
ホスト出版物のタイトルCSAI 2023 - 2023 7th International Conference on Computer Science and Artificial Intelligence
出版社Association for Computing Machinery
ページ346-352
ページ数7
ISBN(電子版)9798400708688
DOI
出版ステータスPublished - 2023 12月 8
イベント7th International Conference on Computer Science and Artificial Intelligence, CSAI 2023 - Beijing, China
継続期間: 2023 12月 82023 12月 10

出版物シリーズ

名前ACM International Conference Proceeding Series

Conference

Conference7th International Conference on Computer Science and Artificial Intelligence, CSAI 2023
国/地域China
CityBeijing
Period23/12/823/12/10

ASJC Scopus subject areas

  • 人間とコンピュータの相互作用
  • コンピュータ ネットワークおよび通信
  • コンピュータ ビジョンおよびパターン認識
  • ソフトウェア

フィンガープリント

「Exploiting Paraphrasers and Inverse Paraphrasers: A Novel Approach to Enhance English Writing Fluency through Improved Style Transfer Training Data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル