Extended Res-UNet with Hierarchical Inner-Modules for Liver Tumor Segmentation from CT Volumes

Jiayin Shi, Sei Ichiro Kamata

研究成果: Conference contribution

抄録

Liver cancer is the second most common cause of cancer death and the sixth most frequent cancer in the world. Multi-Detector Computed Tomography (MDCT) images are now widely used to manifest liver tumors' shape and volume, but it is hard for a doctor to realize such information at once. To support automatic MDCT analyzing work, we propose an extended residual U-Net with the novel hierarchical inner-module (HIM) and skip-connected hierarchical inner-modules (SHIMs). The HIM and SHIMs realize fine-grained feature extraction by separating the feature map into groups by channels, and using a set of small inner filter groups to extract detailed features from these groups. The inner filter group made up of one convolutional layer and one attention layer are connected hierarchically to redistribute the model's attention on different feature groups. We evaluate the proposed method using 3DIRCADb dataset including 22 CT volumes where 16 volumes have tumors in the liver. The Dice values of liver and tumor segmentation are 0.931 and 0.792. The tumor segmentation result is better than the state-of-the-art method, showing strong ability in tumor feature extraction.

本文言語English
ホスト出版物のタイトル2022 4th International Conference on Robotics and Computer Vision, ICRCV 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ページ169-174
ページ数6
ISBN(電子版)9781665481700
DOI
出版ステータスPublished - 2022
イベント4th International Conference on Robotics and Computer Vision, ICRCV 2022 - Virtual, Online, China
継続期間: 2022 9月 252022 9月 27

出版物シリーズ

名前2022 4th International Conference on Robotics and Computer Vision, ICRCV 2022

Conference

Conference4th International Conference on Robotics and Computer Vision, ICRCV 2022
国/地域China
CityVirtual, Online
Period22/9/2522/9/27

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識
  • 制御と最適化

フィンガープリント

「Extended Res-UNet with Hierarchical Inner-Modules for Liver Tumor Segmentation from CT Volumes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル