Extension and performance/accuracy formulation for optimal GeAr-based approximate adder designs

    研究成果: Article査読

    1 被引用数 (Scopus)


    Approximate computing is a promising solution for future energy-efficient designs because it can provide great improvements in performance, area and/or energy consumption over traditional exact-computing designs for non-critical error-tolerant applications. However, the most challenging issue in designing approximate circuits is how to guarantee the pre-specified computation accuracy while achieving energy reduction and performance improvement. To address this problem, this paper starts from the state-of-the-art general approximate adder model (GeAr) and extends it for more possible approximate design candidates by relaxing the design restrictions. And then a maximum-error-distance-based performance/accuracy formulation, which can be used to select the performance/energy-accuracy optimal design from the extended design space, is proposed. Our evaluation results show the effectiveness of the proposed method in terms of area overhead, performance, energy consumption, and computation accuracy.

    ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
    出版ステータスPublished - 2018 7月 1

    ASJC Scopus subject areas

    • 信号処理
    • コンピュータ グラフィックスおよびコンピュータ支援設計
    • 電子工学および電気工学
    • 応用数学


    「Extension and performance/accuracy formulation for optimal GeAr-based approximate adder designs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。