Extension of Hidden Markov models for multiple candidates and its application to gesture recognition

Yosuke Sato*, Tetsuji Ogawa, Tetsunori Kobayashi

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We propose a modified Hidden Markov Model (HMM) with a view to improve gesture recognition using a moving camera. The conventional HMM is formulated so as to deal with only one feature candidate per frame. However, for a mobile robot, the background and the lighting conditions are always changing, and the feature extraction problem becomes difficult. It is almost impossible to extract a reliable feature vector under such conditions. In this paper, we define a new gesture recognition framework in which multiple candidates of feature vectors are generated with confidence measures and the HMM is extended to deal with these multiple feature vectors. Experimental results comparing the proposed system with feature vectors based on DCT and the method of selecting only one candidate feature point verifies the effectiveness of the proposed technique.

本文言語English
ページ(範囲)1239-1246
ページ数8
ジャーナルIEICE Transactions on Information and Systems
E88-D
6
DOI
出版ステータスPublished - 2005 6月

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「Extension of Hidden Markov models for multiple candidates and its application to gesture recognition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル