FairHealth: Long-Term Proportional Fairness-Driven 5G Edge Healthcare in Internet of Medical Things

Xi Lin, Jun Wu*, Ali Kashif Bashir, Wu Yang, Aman Singh, Ahmad Ali Alzubi

*この研究の対応する著者

研究成果: Article査読

22 被引用数 (Scopus)

抄録

Recently, the Internet of Medical Things (IoMT) could offload healthcare services to 5G edge computing for low latency. However, some existing works assumed altruistic patients will sacrifice quality of service for the global optimum. For priority-aware and deadline-sensitive healthcare, this sufficient and simplified assumption will undermine the engagement enthusiasm, i.e., unfairness. To address this issue, we propose a long-term proportional fairness-driven 5G edge healthcare, i.e., FairHealth. First, we establish a long-term Nash bargaining game to model the service offloading, considering the stochastic demand and dynamic environment. We then design a Lyapunov-based proportional-fairness resource scheduling algorithm, which decouples the long-term fairness problem into single-slot subproblems, realizing a tradeoff between service stability and fairness. Moreover, we propose a block-coordinate descent method to iteratively solve nonconvex fair subproblems. Simulation results show that our scheme can improve 74.44% of the fairness index (i.e., Nash product), compared with the classic global time-optimal scheme.

本文言語English
ページ(範囲)8905-8915
ページ数11
ジャーナルIEEE Transactions on Industrial Informatics
18
12
DOI
出版ステータスPublished - 2022 12月 1

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 情報システム
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学

フィンガープリント

「FairHealth: Long-Term Proportional Fairness-Driven 5G Edge Healthcare in Internet of Medical Things」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル