Fast hypercomplex polar Fourier analysis for image processing

Zhuo Yang*, Sei Ichiro Kamata

*この研究の対応する著者

研究成果: Conference contribution

抄録

Hypercomplex polar Fourier analysis treats a signal as a vector field and generalizes the conventional polar Fourier analysis. It can handle signals represented by hypercomplex numbers such as color images. It is reversible that can reconstruct image. Its coefficient has rotation invariance property that can be used for feature extraction. With these properties, it can be used for image processing applications like image representation and image understanding. However in order to increase the computation speed, fast algorithm is needed especially for image processing applications like realtime systems and limited resource platforms. This paper presents fast hypercomplex polar Fourier analysis that based on symmetric properties and mathematical properties of trigonometric functions. Proposed fast hypercomplex polar Fourier analysis computes symmetric eight points simultaneously that significantly reduce the computation time.

本文言語English
ホスト出版物のタイトルAdvances in Image and Video Technology - 5th Pacific Rim Symposium, PSIVT 2011, Proceedings
ページ141-148
ページ数8
PART 2
DOI
出版ステータスPublished - 2011
イベント5th Pacific-Rim Symposium on Video and Image Technology, PSIVT 2011 - Gwangju, Korea, Republic of
継続期間: 2011 11月 202011 11月 23

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
番号PART 2
7088 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference5th Pacific-Rim Symposium on Video and Image Technology, PSIVT 2011
国/地域Korea, Republic of
CityGwangju
Period11/11/2011/11/23

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Fast hypercomplex polar Fourier analysis for image processing」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル