TY - JOUR
T1 - Fatigue-induced changes in hamstrings’ active muscle stiffness
T2 - effect of contraction type and implications for strain injuries
AU - Evangelidis, Pavlos E.
AU - Shan, Xiyao
AU - Otsuka, Shun
AU - Yang, Chi
AU - Yamagishi, Takaki
AU - Kawakami, Yasuo
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2023/4
Y1 - 2023/4
N2 - Purpose: Hamstring strain injuries may occur due to differential fatigue and compromised mechanical properties among the hamstring muscles. We examined (1) the effect of fatigue on hamstrings active muscle stiffness, and (2) whether contraction type affects active muscle stiffness changes during a submaximal fatiguing task. Methods: Nine healthy males completed 99 submaximal knee flexions in isometric (ISO), concentric (CON), and eccentric (ECC) conditions. We measured the knee flexor maximal voluntary torque (MVT) (pre/post), shear wave velocity (SWV) during contraction and transverse relaxation times (T2) (pre/post) in biceps femoris long head (BFlh), semitendinosus (ST), and semimembranosus (SM) muscles. Results: MVT decreased substantially after all conditions (− 18.4 to − 33.6%). The average relative torque sustained during the task was lower in CON than ISO and ECC, but absolute torque was similar. SWV interindividual responses were highly variable across muscles and contraction types. On average, BFlh SWV tended to increase in ISO (0.4 m/s, 4.5%, p = 0.064) but decreased in ECC condition (− 0.8 m/s, − 7.7%, p < 0.01). ST SWV decreased in CON (− 1.1 m/s, − 9.0%, p < 0.01), while it remained unchanged in ISO and ECC. SM SWV decreased in CON (− 0.8 m/s, − 8.1%, p < 0.01), but it was unaffected in ISO and variable in ECC. Conclusion: Fatigue has a differential effect on the mechanical properties of the constituent hamstring muscles, as measured with shear wave elastography, depending upon contraction type. We found preliminary evidence that BFlh is more fatigued than ST or SM during eccentric contractions, which may explain its susceptibility to strain injuries.
AB - Purpose: Hamstring strain injuries may occur due to differential fatigue and compromised mechanical properties among the hamstring muscles. We examined (1) the effect of fatigue on hamstrings active muscle stiffness, and (2) whether contraction type affects active muscle stiffness changes during a submaximal fatiguing task. Methods: Nine healthy males completed 99 submaximal knee flexions in isometric (ISO), concentric (CON), and eccentric (ECC) conditions. We measured the knee flexor maximal voluntary torque (MVT) (pre/post), shear wave velocity (SWV) during contraction and transverse relaxation times (T2) (pre/post) in biceps femoris long head (BFlh), semitendinosus (ST), and semimembranosus (SM) muscles. Results: MVT decreased substantially after all conditions (− 18.4 to − 33.6%). The average relative torque sustained during the task was lower in CON than ISO and ECC, but absolute torque was similar. SWV interindividual responses were highly variable across muscles and contraction types. On average, BFlh SWV tended to increase in ISO (0.4 m/s, 4.5%, p = 0.064) but decreased in ECC condition (− 0.8 m/s, − 7.7%, p < 0.01). ST SWV decreased in CON (− 1.1 m/s, − 9.0%, p < 0.01), while it remained unchanged in ISO and ECC. SM SWV decreased in CON (− 0.8 m/s, − 8.1%, p < 0.01), but it was unaffected in ISO and variable in ECC. Conclusion: Fatigue has a differential effect on the mechanical properties of the constituent hamstring muscles, as measured with shear wave elastography, depending upon contraction type. We found preliminary evidence that BFlh is more fatigued than ST or SM during eccentric contractions, which may explain its susceptibility to strain injuries.
KW - Eccentric contractions
KW - Fatigue
KW - Hamstrings
KW - Muscle stiffness
KW - Shear wave elastography
KW - Strain injuries
UR - http://www.scopus.com/inward/record.url?scp=85143533688&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85143533688&partnerID=8YFLogxK
U2 - 10.1007/s00421-022-05104-0
DO - 10.1007/s00421-022-05104-0
M3 - Article
C2 - 36494585
AN - SCOPUS:85143533688
SN - 1439-6319
VL - 123
SP - 833
EP - 846
JO - European Journal of Applied Physiology
JF - European Journal of Applied Physiology
IS - 4
ER -