Feature representation learning for calving detection of cows using video frames

Ryosuke Hyodo, Teppei Nakano*, Tetsuji Ogawa

*この研究の対応する著者

研究成果: Conference contribution

抄録

Data-driven feature extraction is examined to realize accurate and robust calving detection. Automatic calving sign detection systems can support farmers' decision making. In this paper, neural networks are designed to extract information relevant to calving signs, which can be observed from video frames, such as the frequency in pre-calving postures, statistics in movement, and statistics in rotation. Experimental comparisons using surveillance videos demonstrate that the proposed feature extraction methods contribute to reducing false positives and explaining the basis of the prediction compared to the end-to-end calving detection system.

本文言語English
ホスト出版物のタイトルProceedings of ICPR 2020 - 25th International Conference on Pattern Recognition
出版社Institute of Electrical and Electronics Engineers Inc.
ページ7043-7049
ページ数7
ISBN(電子版)9781728188089
DOI
出版ステータスPublished - 2020
イベント25th International Conference on Pattern Recognition, ICPR 2020 - Virtual, Milan, Italy
継続期間: 2021 1月 102021 1月 15

出版物シリーズ

名前Proceedings - International Conference on Pattern Recognition
ISSN(印刷版)1051-4651

Conference

Conference25th International Conference on Pattern Recognition, ICPR 2020
国/地域Italy
CityVirtual, Milan
Period21/1/1021/1/15

ASJC Scopus subject areas

  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Feature representation learning for calving detection of cows using video frames」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル