Finding co-occurring topics in wikipedia article segments

Renzhi Wang*, Jianmin Wu, Mizuho Iwaihara

*この研究の対応する著者

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

Wikipedia is the largest online encyclopedia, in which articles form knowledgeable and semantic resources. Identical topics in different articles indicate that the articles are related to each other about topics. Finding such co-occurring topics is useful to improve the accuracy of querying and clustering, and also to contrast related articles. Existing topic alignment work and topic relevance detection are based on term occurrence. In our research, we discuss incorporating latent topics existing in article segments by utilizing Latent Dirichlet Allocation (LDA), to detect topic relevance. We also study how segment proximities, arising from segment ordering and hyperlinks, shall be incorporated into topic detection and alignment. Experimental data show our method can find and distinguish three types of co-occurrence.

本文言語English
ホスト出版物のタイトルThe Emergence of Digital Libraries - Research and Practices - 16th International Conference on Asia-Pacific Digital Libraries, ICADL 2014, Proceedings
編集者Adam Jatowt, Edie Rasmussen, Kulthida Tuamsuk
出版社Springer Verlag
ページ252-259
ページ数8
ISBN(電子版)9783319128221
出版ステータスPublished - 2014 1月 1
イベント16th International Conference on Asia-Pacific Digital Libraries, ICADL 2014 - Chiang Mai, Thailand
継続期間: 2014 11月 52014 11月 7

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
8839
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference16th International Conference on Asia-Pacific Digital Libraries, ICADL 2014
国/地域Thailand
CityChiang Mai
Period14/11/514/11/7

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Finding co-occurring topics in wikipedia article segments」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル