Fourier expansion of holomorphic modular forms on classical lie groups of tube type along the minimal parabolic subgroup

H. Narita*

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

For holomorphic modular forms on tube domains, there are two types of known Fourier expansions, i.e. the classical Fourier expansion and the Fourier-Jacobi expansion. Either of them is along a maximal parabolic subgroup. In this paper, we discuss Fourier expansion of holomorphic modular forms on tube domains of classical type along the minimal parabolic subgroup. We also relate our Fourier expansion to the two known ones in terms of Fourier coefficients and theta series appearing in these expansions.

本文言語English
ページ(範囲)253-279
ページ数27
ジャーナルAbhandlungen aus dem Mathematischen Seminar der Universitat Hamburg
74
1
DOI
出版ステータスPublished - 2004 12月 1
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Fourier expansion of holomorphic modular forms on classical lie groups of tube type along the minimal parabolic subgroup」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル