TY - JOUR
T1 - Friend-as-Learner
T2 - Socially-Driven Trustworthy and Efficient Wireless Federated Edge Learning
AU - Lin, Xi
AU - Wu, Jun
AU - Li, Jianhua
AU - Zheng, Xi
AU - Li, Gaolei
N1 - Publisher Copyright:
© 2002-2012 IEEE.
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Recently, wireless edge networks have realized intelligent operation and management with edge artificial intelligence (AI) techniques (i.e., federated edge learning). However, the trustworthiness and effective incentive mechanisms of federated edge learning (FEL) have not been fully studied. Thus, the current FEL framework will still suffer untrustworthy or low-quality learning parameters from malicious or inactive learners, which undermines the viability and stability of FEL. To address these challenges, the potential social attributes among edge devices and their users can be exploited, while not included in previous works. In this paper, we propose a novel Social Federated Edge Learning framework (SFEL) over wireless networks, which recruits trustworthy social friends as learning partners. First, we build a social graph model to find like-minded friends, comprehensively considering the mutual trust and learning task similarity. Besides, we propose a social effect based incentive mechanism for better personal federated learning behaviors with both complete and incomplete information. Finally, we conduct extensive simulations with the Erdos-Renyi random network, the Facebook network, and the classic MNIST/CIFAR-10 datasets. Simulation results demonstrate our framework could realize trustworthy and efficient federated learning over wireless edge networks, and it is superior to the existing FEL incentive mechanisms that ignore social effects.
AB - Recently, wireless edge networks have realized intelligent operation and management with edge artificial intelligence (AI) techniques (i.e., federated edge learning). However, the trustworthiness and effective incentive mechanisms of federated edge learning (FEL) have not been fully studied. Thus, the current FEL framework will still suffer untrustworthy or low-quality learning parameters from malicious or inactive learners, which undermines the viability and stability of FEL. To address these challenges, the potential social attributes among edge devices and their users can be exploited, while not included in previous works. In this paper, we propose a novel Social Federated Edge Learning framework (SFEL) over wireless networks, which recruits trustworthy social friends as learning partners. First, we build a social graph model to find like-minded friends, comprehensively considering the mutual trust and learning task similarity. Besides, we propose a social effect based incentive mechanism for better personal federated learning behaviors with both complete and incomplete information. Finally, we conduct extensive simulations with the Erdos-Renyi random network, the Facebook network, and the classic MNIST/CIFAR-10 datasets. Simulation results demonstrate our framework could realize trustworthy and efficient federated learning over wireless edge networks, and it is superior to the existing FEL incentive mechanisms that ignore social effects.
KW - Social trust
KW - federated edge learning
KW - incentive mechanism
KW - resource allocation
UR - http://www.scopus.com/inward/record.url?scp=85104665557&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85104665557&partnerID=8YFLogxK
U2 - 10.1109/TMC.2021.3074816
DO - 10.1109/TMC.2021.3074816
M3 - Article
AN - SCOPUS:85104665557
SN - 1536-1233
VL - 22
SP - 269
EP - 283
JO - IEEE Transactions on Mobile Computing
JF - IEEE Transactions on Mobile Computing
IS - 1
ER -