Genetic network programming with reinforcement learning using sarsa algorithm

Shingo Mabu*, Hiroyuki Hatakeyama, Kotaro Hirasawa, Jinglu Hu

*この研究の対応する著者

研究成果: Conference contribution

6 被引用数 (Scopus)

抄録

A new graph-based evolutionary algorithm called Genetic Network Programming (GNP) has been proposed. The solutions of GNP are represented as graph structures, which can improve the expression ability and performance. In addition, GNP with Reinforcement Learning (GNP-RL) has been proposed to search for solutions efficiently. GNP-RL can use current information and change its programs during task execution, i.e., online learning. Thus, it has an advantage over evolution-based algorithms in case much information can be obtained during task execution. GNP-RL has a special stateaction space and it contributes to reducing the size of the Q-table and learning efficiently. The proposed method is applied to the controller of Khepera simulator and its performance is evaluated.

本文言語English
ホスト出版物のタイトル2006 IEEE Congress on Evolutionary Computation, CEC 2006
ページ463-469
ページ数7
出版ステータスPublished - 2006 12月 1
イベント2006 IEEE Congress on Evolutionary Computation, CEC 2006 - Vancouver, BC, Canada
継続期間: 2006 7月 162006 7月 21

出版物シリーズ

名前2006 IEEE Congress on Evolutionary Computation, CEC 2006

Conference

Conference2006 IEEE Congress on Evolutionary Computation, CEC 2006
国/地域Canada
CityVancouver, BC
Period06/7/1606/7/21

ASJC Scopus subject areas

  • 人工知能
  • ソフトウェア
  • 理論的コンピュータサイエンス

フィンガープリント

「Genetic network programming with reinforcement learning using sarsa algorithm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル