Geometric somersaults of a polymer chain through cyclic twisting motions

Tomohiro Yanao*, Taiko Hino

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

This study explores the significance of geometric angle shifts, which we call geometric somersaults, arising from cyclic twisting motions of a polymer chain. A five-bead polymer chain serves as a concise and minimal model of a molecular shaft throughout this study. We first show that this polymer chain can change its orientation about its longitudinal axis largely, e.g., 120, under conditions of zero total angular momentum by changing the two dihedral angles in a cyclic manner. This phenomenon is an example of the so-called "falling cat" phenomenon, where a falling cat undergoes a geometric somersault by changing its body shape under conditions of zero total angular momentum. We then extend the geometric somersault of the polymer chain to a noisy and viscous environment, where the polymer chain is steered by external driving forces. This extension shows that the polymer chain can achieve an orientation change keeping its total angular momentum and total external torque fluctuating around zero in a noisy and viscous environment. As an application, we argue that the geometric somersault of the polymer chain by 120 may serve as a prototypical and coarse-grained model for the rotary motion of the central shaft of ATP synthase (FOF1-ATPase). This geometric somersault is in clear contrast to the standard picture for the rotary motion of the central shaft as a rigid body, which generally incurs nonzero total angular momentum and nonzero total external torque. The power profile of the geometric somersault implies a preliminary mechanism for elastic power transmission. The results of this study may be of fundamental interest in twisting and rotary motions of biomolecules.

本文言語English
論文番号012409
ジャーナルPhysical Review E
95
1
DOI
出版ステータスPublished - 2017 1月 23

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Geometric somersaults of a polymer chain through cyclic twisting motions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル